Jd 98X =YL

Buidepsiul pue ‘ubisep ‘ebenbue| A|quissse

fifth
edition

Prentice Hall

Dec Hex Bin
00000011

ORG ; FOUR
Arithmetic
and Logic
Instructions
And Programs

The x86 PC

assembly language,
design, and interfacing
fifth edition

MUHAMMAD ALI MAZIDI
JANICE GILLISPIE MAZIDI
DANNY CAUSEY

OBJECTIVES

this chapter enables the student to:

« Demonstrate how 8-bit and 16-bit unsigned
numbers are added in the x86.

« Convert data to any of the forms:
— ASCIl,packed BCD,unpacked BCD.

« Explain the effect of unsigned arithmetic
instructions on the flags.

« Code the following Assembly language unsigned
arithmetic instructions:
— Addition instructions: ADD and ADC.
— Subtraction instructions SUB and SBB.
— Multiplication and division instructions MUL and DIV.

e The x86 PC
Fj_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

this chapter enables the student to:

e Code BCD arithmetic instructions:
— DAA and DAS.

« Code the Assembly language logic instructions:

— AND, OR, and XOR.

— Logical shift instructions SHR and SHL.
— The compare instruction CMP.

 Code bitwise rotation instructions
— ROR, ROL, RCR, and RCL.

 Demonstrate an ability to use all of the above
instructions in Assembly language programs.

* Perform bitwise manipulation using the C language.

_ The x86 PC
Fj_E ARS U_ﬁ Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.0: UNSIGNED ADDITION AND SUBTRACTION

* Unsigned numbers are defined as data in which all
the bits are used to represent data.
— Applies to the ADD and SUB instructions.

— No bits are set aside for the positive or negative sign.
« Between 00 and FFH (0 to 255 decimal) for 8-bit data.
« Between 0000 and FFFFH (0 to 65535 decimal) for 16-bit data.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

addition of unsigned numbers
* The form of the ADD instruction is:

ADD destination, socurce ;destination = destination + source

 ADD and ADC are used to add two operands.
— The destination operand can be a register or in memory.

— The source operand can be a register, in memory, or
iImmediate.

* Memory-to-memory operations are never allowed
In x86 Assembly language.

— The instruction could change ZF, SF, AF, CF, or PF bits of
the flag register.

e The x86 PC
Fj_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Arithmetic Instructions — ADD, ADC, INC, AAA, DAA

ADD Addition ADDD, S |(S)+ (D)= (D) All
Carry = (CF)
ADC Add with ADCD, S |(S)+ (D)+ (CF) = (D) All
carry Carry = (CF)
INC Increment by | INC D (D)+1=> (D) All but
one CY
i The x86 PC
PLUSIOL W /sscmbly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrenGe Hall - Upper Saddle River, NJ 07458

Ex. 1 ADD AX, 2 Ex. 2 INC BX

ADC AX, 2 INC word ptr [BX]
25
56
[e ———
7B > 81
_ The x86 PC
RLRICU (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prent"re Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND

SUBTRACTION

addition of unsigned numbers

Example 3-1
Show how the flag register is affected by
MOV AL, OF5H
ADD AL, OBH
Solution:
EF5H 1 1) g0) 641 0
+ O0BH + 0000 1011
100H 0000 0000

CF = 1, since there is a carry out from D7

SF = 0, the status of D7 of the result

PF = 1, the number of s is zero (zero is an even number)
AF = 1, there 1s a carry from D3 to D4

ZF =1, the result of the action is zero (for the & bits)

After the addition, the AL register (destination) contains 00 and the flags are as follows:

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

CASEl addition of individual byte/word data

* Program 3-1a uses AH to accumulate carries as the
operands are added to AL.

Write a program to calculate the total sum of 5 bytes of data. Each byte represents the daily
wages of a worker. This person does not make more than $255 (FFH) a day. The decimal data is
as follows: 125, 235, 197, 91, and 48.
TITLE PROG3-1A (EXE) ADDING 5 BYTES
PAGE 60,132
.MODEL SMALL
.STACK 64
DATA
COUNT EQU 05
DATA DB 125,235,197,91,48
ORG 0008H
SUM DW ?
CODE
djEyILJHKELHfﬁE__‘_,_,#_—*—f——*’*____“-——ﬁ-ﬁ_ -
See the entire program listing on page 93 of your textbook.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION
CASEl addition of individual byte/word data

 Numbers are converted to hex by the assembler:
~ 125=7DH 235=0EBH 197=0C5H 91=5BH 48=30H

* Three iterations of the loop are shown below.

— In the first, 7DH is added to AL.
« CF=0andAH = 00.
« CX=04and ZF = 0.
— Second, EBH is added to AL & since a carry occurred,
AH is incremented
« AL=68H and CF = 1.
« CX=03and ZF = 0.
— Third, C5H is added to AL, again a carry increments AH.
« AL =2DH, CX =02 and ZF = 0.

_ The x86 PC
Fj_E ARS U_f_'q Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

CASEl addition of individual byte/word data

* This process continues until CX = 00 and the zero
flag becomes 1, causing JNZ to fall through.

— The result will be saved in the word-sized memory set
aside in the data segment.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

CASEl addition of individual byte/word data

* Due to pipelining it is strongly recommended that
the following lines of the program be replaced:

Replace these lines With these lines

BACK: ADD AL,[SI] BACK: ADD AL,[§T]
JNC OVER ADC AH,00 ;add 1 to AH if CF=1
INC AH INC ST

OVER: INC ST

— The "ADC AH, 00" instruction in reality means add
00+AH+CF and place the result in AH.

* More efficient since the instruction "JNC OVER" has to empty
the queue of pipelined instructions and fetch the instructions
from the OVER target every time the carry is zero (CF = 0).

* Program 3-1b is the same as 3-1a, rewritten for word addition.
(See the program listing on page 94 of your textbook.)

e The x86 PC
Fj_E ARS U_'H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

CASE2 addition of multiword numbers

* Assume a program to total U.S. budget for the last
100 years or mass of planets in the solar system.
— Numbers being added could be 8 bytes wide or more.

* The programmer must write the code to break the
large numbers into smaller chunks to be processed.
— A 16-Dbit register & an 8 byte operand is wide would
take a total of four iterations.
— An 8-bit register with the same operands would require
eight iterations.

_ The x86 PC
Fj_E ARS U_ﬁ Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

CASE2 addition of multiword numbers

 In writing program 3-2, the first decision was the
directive for coding the data in the data segment.

TITLE FROG3-2 (EXE) MULTIWORD ADDITION
PAGE 60,132
.MODEL SMALL
.STACK 64
DATA
DATAL B TH H H
i 08 i SRuER DQ was chosen since it can
DATA2 DQ 3FCD4FA23B8DH represent data as large as
ORG 0020H 8 b t .d
DATA3 DQ 2 yles wiae.
.CODE
MAIN PROC FAR
MOV AX¥, @DATA
MOV DS, AX
CLC rclear carry before first addition

HJx/——MQHﬁ_ﬁéEL9EEg5I_DﬂIﬂl~*‘_"_____‘““_—*—£ar anerandl —
See the entire program listing on page 95 of your textbook.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

CASE2 addition of multiword numbers

* |n addition of multibyte (or multiword) numbers, the
ADC instruction is always used, as the carry must
be added to the next-higher byte (or word) in the

next iteration.

— Before executing ADC, the carry flag is cleared
(CF = 0) using the CLC (clear carry) instruction.

* Three pointers have been used:

— Sl for DATA1; DI for DATAZ2.
— BX for DATAS3. (where the result is saved)

_ The x86 PC
Fj_E ARS U_f_'q Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

CASE2 addition of multiword numbers

* A new instruction, "LOOP XXXX", replaces the often
used "DEC CX" and "JNZ XXXX".

LOOP =xxxx ;1s equivalent to the following two instructions

DEC CX
JNZ HEXXK

— When "LOOP xxxx" is executed, CX decrements

automatically, and if CX is not 0, the processor will
jump to target address xxxx.

 [f CXis 0, the next instruction (below "LOOP xxxx")is
executed.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

subtraction of unsigned numbers

* |n subtraction, x86 processors use 2's complement.
— Internal adder circuitry performs the subtraction command.

« X806 steps in executing the SUB instruction:

— 1. Take the 2's complement of the subtrahend.
(source operand)
— 2. Add it to the minuend. (destination operand)

— 3. Invert the carry.

* The steps are performed for every SUB instruction
regardless of source & destination of the operands.

SUB dest, source;dest = dest - source

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

subtraction of unsigned numbers

« After the execution, if CF = 0, the result is positive.

— If CF =1, the result is negative and the destination
has the 2's complement of the result.

Example 3-2
Show the steps involved in the following:
MOV AL, 3FH ;s load AL=3FH
MOV BH, 23H ; load BH=Z3H
SUB AL,BH ;subtract BH from AL. Place result in AL.
Solution:
AL 3F OEAY il 0011 1111
=HH = = gUl0 0011 + 1101 1101 (2's complement)
e 1 0001 1100 CF=0 (step 3)

The flags would be set as follows: CF =0, ZF =0, AF =0, PF =0, and SF = 0.
The programmer must look at the carry flag (not the sign flag) to determine if the result is pos-
itive or negative.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

subtraction of unsigned numbers

 NOT performs the 1's complement of the operand.
— The operand is incremented to get the 2's complement.

Example 3-3
Analyze the following program:
;from the data segment:
DATA] DB 4CH
DATAZ DB 6EH
DATAZ DB ?
;from the code segment:
MOV DH, DATA] ;1load DH with DATAl walue (4CH)
SUB DH, DATAZ ;subtract DATAZ (6E} from DH (4CH)
JNC NEXT ;1f CF=0 jump to NEXT target
NOT DH ;1f CF=1 then take 1's complement
INC DH ;and increment to get 2's complement
NEXT : MOV DATAS, DH ;save DH in DATA3
Solution:
Following the three steps for "SUB DH,DATA2":
4C I 13 A B 0100 1100
-6E Q118 11108 + 1001 0010 (2' s complement)
-22 01101 1110 CF=1 (step 3)result 1s negative

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

SBB subtract with borrow

« SBB is used for multibyte (multiword) numbers.

— It will take care of the borrow of the lower operand.
« If the carry flag is 0, SBB works like SUB.
« If the carry flag is 1, SBB subtracts 1 from the result.

 The PTR (pointer) data specifier directive is widely

used to specify the size of the operand when it
differs from the defined size.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.1: UNSIGNED ADDITION AND SUBTRACTION

SBB - subtract with borrow

« "WORD PTR" tells the assembler to use a word
operand, though the data is defined as a doubleword.

Example 3-4

DATA A
DATA B
RESULT

Solution:

DD
DD
DD
MOV
SUB
MOV
MOV

SEB
MOV

Analyze the following program:

6Z250ZFAH
412963BH

2

AX,WORD PTR DATA A
AX,WORD PTR DATA B
WORD PTR RESULT, AX
AX,WORD PTR DATA A +2
AX,WORD PTR DATA B +2
WORD PTR RESULT+2,AX

After the SUB, AX = 62FA — 963B = CCBF and the carry flag is set. Since CF = |, when SBB
1s executed, AX =625 - 412 — 1 = 212. Therefore, the value stored in RESULT 1s 0212CCBFE.

;AX=0ZFA

;SUB 963B from AX
;save the result

s AX=0625

;SUB 0412 with borrow
;save the result

The x86 PC

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

multiplication of unsigned numbers

* In multiplying two numbers in the x86 processor,
use of registers AX, AL, AH, and DX is necessary.

— The function assumes the use of those registers.

* Three multiplication cases:
— byte times byte; word times word; byte times word.

Table 3-1: Unsigned Multiplication Summary

Multiplication Operand 1 Operand 2 Result
byte x byte AL register or memory AX
word x word AX register O memory DX AX

word x byte AL = byte, AH=0 register or memory DX AX

e The x86 PC
Fj_E ARS U_'H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

multiplication of unsigned numbers

* byte X byte - one of the operands must be in the
AL register and the second can be in a register or

IN memory.
— After the multiplication, the result is in AX.

RESULT DW ? rresultis defined in the data segment
MOV AL, Z25H ;a byte 1s moved to AL
MOV BL, 65H ;immediate data must beln aregister
MUL BL ;AL = 25 x b5H

MOV RESULT,AX ;the result is saved

— 25H is multiplied by 65H and the result is saved in
word-sized memory named RESULT.

* Register addressing mode was used.
« Examples of other address modes appear on textbook page 98.

e The x86 PC
Fj_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

multiplication of unsigned numbers

 word X word - one operand must be in AX & the
second operand can be in a register or memory.

— After multiplication, AX & DX will contain the result.

« Since word-by-word multiplication can produce a 32-bit
result, AX will hold the lower word and DX the higher word.

DATA3 DW
DATA4 DW
RESULT1 DW

MUL
MOV
MOV

MOV

2378H

2F79H

2 DUP(?)

AX,DATAZ ;load first operand into AX
DATA4 ;multiply it by the second operand

RESULT1, AX ;store the lower word result
RESULT1+2,DX ;store the higher word result

The x86 PC

Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

multiplication of unsigned numbers

 word X byte - similar to word-by-word
multiplication except that AL contains the byte
operand and AH must be set to zero.

;from the data segment:

DATAS DB
DATAG DW
RESULT3 DW

6BH
12C3H
2 DUP(?)

;from the code segment:

MOV
SUB
MUL
MOV
MOV
MOV

AL, DATAD ;AL holds byte operand

AH, AH ;AH must be cleared

DATAG rbyte in AL mult. by word operand
BX,OFFSET RESULT3 ;BX polints to product

[BX] , AX ;AX holds lower word

[BX] +2, DX ;DX holds higher word

The x86 PC

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

division of unsigned numbers

 Like multiplication, division of two numbers in the
x86 uses of registers AX, AL, AH, and DX.

* Four division cases:
— byte over byte; word over word.
— word over byte; doubleword over word.

* |n divide, in cases where the CPU cannot perform
the division, an interrupt is activated.

— Referred to as an exception, and the PC will display a
Divide Error message.
« |f the denominator is zero. (dividing any number by 00)
« |f the quotient is too large for the assigned register.

e The x86 PC
Fj_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

division of unsigned numbers

* byte/byte - the numerator must be in the AL register
and AH must be set to zero.

— The denominator cannot be immediate but can be in a
register or memory, supported by the addressing modes.

 After the DIV instruction is performed, the quotient is in AL
and the remainder is in AH.

Table 3-2: Unsigned Division Summag

Division Numerator Denominator Quotient Rem.
byte/byte AL = byte, AH =0 register or memory AL AH
word/word AX =word, DX =0 register or memory AX? DX
word/byte AX = word register or memory ALl AH
doubleword/word DXAX = doubleword register or memory AX? DX

Notes: 1. Divide error interrupt if AL > FFH. 2. Divide error interrupt if AX > FFFFH.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

division of unsigned numbers
» Various addressing modes of the denominator.

QOUT1 DB ?
REMAINI DB ?
;using immedlate addressing mode will glve an error
MOV AL, DATAT ;move data 1nto AL
SUR AH, AH ;clear AH
DIV 10 ; immed. mode not allowed!!

_ The x86 PC
Fj_E ARS U_f_\l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

division of unsigned numbers

» Various addressing modes of the denominator.

;allowable modes 1nclude:
;using direct mode
MOV AL, DATAT
SUB AH,AH
DIV DATAS
MOV QOUT1, AL
MOV REMAIN], AH
;using register addressing mode
MOV AL, DATATY
SUB AH, AH
MOV BH, DATAS
DIV BH
MOV QOUT1,AL
MOV REMAIN1, AH

;AL holds numerator
;AH must be cleared
ydivide AX by DATAS
;quotient = AL = 09
;remainder = AH = 05

;AL holds numerator

;AH must be cleared
ymove denom. to register
rdivide AX by BH
rquotient = AL = 09
;remainder = AH = 05

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

division of unsigned numbers

» Various addressing modes of the denominator.

;allowable modes include:
;using register indirect addressing mode

MOV AL, DATAT ;AL holds numerator
SUB AH, AH ;AH must be cleared
MOV BX,OFFSET DATASB ;BX holds offset of DATAS
DIV BYTE PTR [BX] ;divide AX by DATAS

MOV QOUTZ, AX
MOV REMAINDZ, DX

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

division of unsigned numbers

 word/word - the numerator is in AX, and DX must
be cleared.
— The denominator can be in a register or memory.

 After DIV, AX will have the quotient.
 The remainder will be in DX.

MOV AX,10050 ;AX holds numerator

SUB DX, DX ;DX must be cleared

MOV BX,100 ;BX used for denominator
DIV BX

MOV QOUTZ, AX ;quotient = AX = 64H = 100

MOV REMAINDZ,DX ;remainder = DX = 32H = 50

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

division of unsigned numbers

« word/byte - the numerator is in AX & the
denominator can be in a register or memory.

— After DIV, AL will contain the quotient, AH the remainder.
* The maximum quotient is FFH.

« This program divides AX = 2055 by CL = 100.
— The quotient is AL = 14H (20 decimal)
— The remainder is AH = 37H (55 decimal).

MOV AX, 2055 ;AX holds numerator

MOV CL,100 ;CL used for denominator
DIV CL

MOV QUO, AL ;AL holds qguotient

MOV REMI, AH ;AH holds remainder

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.2: UNSIGNED MULTIPLICATION & DIVISION

division of unsigned numbers

* doubleword/word - the numerator is in AX and DX.
— The most significant word in DX, least significant in AX.
« The denominator can be in a register or in memory.
— After DIV, the quotient will be in AX, the remainder in DX.

* The maximum quotient FFFFH.
;from the data segment:

DATAI DD 105432

DATAZ DW 10000

QUOT DW ?

REMATN DW ?

;from the code segment:
MOV AX,WORD PTR DATAl ;AX holds lower word
MOV DX,WORD PTR DATAl1+2;DX higher word of

numerator

DIV DATAZ
MOV QUOT, AX ;AX holds qguotient
MOV REMAIN, DX ;DX holds remainder

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

® Write a program that calculates the average of five temperatures and writes the result in AX

P

DATA DB +13,-10,+19,+14,-18 ;0d,f6,13,0e,ee
MOV CX,5 ;LOAD COUNTER
SuUB BX, BX ;CLEAR BX, USED AS ACCUMULATOR
MOV S|, OFFSET DATA ;SET UP POINTER

BACK: MOV AL,[SI] ;MOVE BYTE INTO AL
CcBW ;SIGN EXTEND INTO AX
ADD BX, AX ;ADD TO BX
INC SI ;/INCREMENT POINTER
DEC CX ;DECREMENT COUNTER
JNZ BACK
mov ax,bx ;LOOP IF NOT FINISHED
MOV CL,5 ;MOVE COUNT TO AL
DIV CL ;FIND THE AVERAGE

The x86 PC

_E ARS D_H Assembly Language, Design, and Interfacing

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Pren'gﬂHall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

AND
* AND destination, source Logical AND Function
— This instruction will perform a logical =~ Inputs _ Output
AND on the operands and place the X Y XANDY
result in the destination. g ? g
* Destination operand can be a register 1 0 0
or in memory. 1 | 1
« Source oper_and can be a register, X _D_ v AND ¥
memory, or immediate.) S

« AND will automatically change the CF & OF to zero.

— PF, ZF, and SF are set according to the result.
* The rest of the flags are either undecided or unaffected.

The x86 PC

Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

AND

 AND can mask certain bits of the operand, and also
to test for a zero operand:

AND DH,DH
JZ — XXXX This code will AND DH with itself

and set ZF = 1 if the result is zero.

XXXX:

Example 3-5

Show the results of the following:
MOV BL, 35H

AND BL, OFH ;AND BL with OFH. Place the result in BL.
Solution:
35H O 01 10101
OFH 00001111
05H 000O0O0T1P0:1 Flag settings will be: SF =0, ZF =0, PF = 1, CF = OF = 0.

The x86 PC
Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

PEARSON

3.3: LOGIC INSTRUCTIONS

OR

 OR destination, source Logical OR Function
— Destination/source operands are Inputs Output
Ored, result placed in the destination. X Y XORY

L 0 0 0

» Can set certain bits of an operandto 1. 3 1 1

 Destination operand can be a register l 0 1

or in memory. 1 1 1

« Source operand can be a register, in ﬁ j})— X OR Y
memory, or immediate.

* Flags are set the same as for the AND instruction.
— CF & OF will be reset to zero.

« SF, ZF, and PF will be set according to the result.
* All other flags are not affected.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

OR

* The OR instruction can also be used to test for a
Zero operand.

— "OR BL, 0" will OR the register BL with 0 and
make ZF =1 if BL is zero.

— "OR BL,BL" will achieve the same result.

Example 3-6
Show the results of the following:
MOV AX, 0504 ;AX = 0504
OR AX,0DA68H ;AX = DF6C
Solution:

0504H 0000 0101 0000 0100
DA68H 1101 1010 0110 1000 Flagswillbe: SF=1,ZF=0,PF=1, CF=0F =0.
DF6C 1101 1111 0110 1100 Notice that parity is checked for the lower 8 bits only.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

XOR
e« XOR dest, src Logical XOR Function
— XOR will eXclusive-OR operands Inputs Output
and place result in the destination. A B A XOR B
» Sets the result bits to 1 if they are g ? ?
not equal, otherwise, reset to 0.] 0 ,
* Flags are set the same as for AND. I 1 0

» Operand rules are the same as in A :g > A XOR B
the AND and OR instructions. g

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

XOR
« XOR can be used to see if two registers have the

same value.
— "XOR BX, cX" will make ZF = 1 if both registers have the
same value, and if they do, the result (0000) is saved in

BX, the destination.
* A widely used application of XOR is to toggle bits of

an operand.
X0OR AL, 04H ;XOR AL with 0000 0100

— Toggling bit 2 of register AL would cause it to change
to the opposite value; all other bits remain unchanged.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

XOR

Example 3-7
Show the results of the following:
MOV DH, 54H
XOR DH, 78H
Solution:
54H 01 01010020
/8H 01 1 11 0020
2C 0010110 0 Flagsettings will be: SF=0, ZF =0, PF =0, CF = OF = 0.
Example 3-8

The XOR instruction can be used to clear the contents of a register by XORing it with itself.
Show how "XOR AH,AH" clears AH, assuming that AH = 45H.

Solution:
45H 01000101
45H 01000101

00 00000000 Flag settings will be: SF =0, ZF =1, PF =1, CF = OF = 0.

The x86 PC

Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

SHIFT

 Shifts the contents of a register or memory location
right or left.

— There are two kinds of shifts:
 Logical - for unsigned operands.
 Arithmetic - for signed operands.
« The number of times (or bits) the operand is shifted
can be specified directly if it is once only.

— Through the CL register if it is more than once.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Target register or memory

3\
< — 0
SHL
> equivalent
SAL < —— 0
J
C
—
SHR >
C
SAR > >
Sign Bit
_ The x86 PC
F_E ARS U_N Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'ﬁsHall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS o[58 8 | s

SHIFT RIGHT

* SHR - logical shift right.
— Operand is shifted right bit by bit.

* For every shift the LSB (least significant bit)
will go to the carry flag. (CF)

« The MSB (most significant bit) is filled with O.
Example 3-9

Show the result of SHR in the following:
MOV AL, 9AH
MOV CL, 3 ;set number of times to shift
SHR AL, CL

Solution:
9AH = 10011010

01001101 CF =0 (shifted once)

00100110 CF =1 (shifted twice)

00010011 CF =0 (shifted three times)
After shifting right three times, AL = 13H and CF = 0.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS o[58 8 | s

SHIFT RIGHT

* |If the operand is to be shifted once only, this is
specified in the SHR instruction itself.

MOV BX, OFFFFH ; BX=FFFFH
SHR B 1 ;shift right BX once only

— After the shift, BX = 7FFFH and CF = 1. SHIFT.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS o[58 8 | s

SHIFT RIGHT
* The operand to be shifted can be in a register or in

memory.
— Immediate addressing mode is not allowed for SHIFT.
« "SHR 25, CL" will cause the assembler to give an error.

Example 3-10

Show the results of SHR in the following:
;from the data segment:

DATAL DW 7777 7TH
;from the code segment:
TIMES EQU 4
MOV CL, TIMES ;CL=04
SHR DATAl,CL ;shift DATA1 CL times

Solution:
After the four shifts, the word at memory location DATA1 will contain 0777. The four LSBs are

lost through the carry, one by one, and Os fill the four MSBs.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS S gy

SHIFT LEFT

« SHL - Logical shift left, the reverse of SHR.

— After every shift, the LSB is filled with O.
« MSB goes to CF.

— All rules are the same as for SHR.
Example 3-11

Show the effects of SHL in the following:

MOV DH, 6
SEr e 3-11 can also
SHL DH,CL be coded as:
Solution: MOV DH, 6
00000110 ST DH, 1
CF=0 00001100 (shifted left once) SHL DH, 1
CEF=0 00011000 SHL DH, 1
CF=0 00110000 SHL DH,1
CF=0 01100000 (shifted four times)
After the four shifts left, the DH register has 60H and CF = 0.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Examples SHL AX,1
SAL DATA1, CL ; shift countis a modulo-32 count

Ex. : Multiply AX by 10
SHL AX, 1
MOV BX, AX
MOV CL,2
SHL AX,CL
ADD AX, BX

Ex. What are the results of SAR CL, 1 if CL initially contains B6H?

Ex. What are the results of SHL AL, CL if AL contains 75H
and CL contains 3?

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'WBHall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS

« ROR, ROL and RCR, RCL are designed specifically
to perform a bitwise rotation of an operand.
— They allow a program to rotate an operand right or left.
« Similar to shift instructions, if the number of times

an operand is to be rotated is more than 1, this is
indicated by CL.

— The operand can be in a register or memory.

* There are two types of rotations.
— Simple rotation of the bits of the operand
— Rotation through the carry.

e The x86 PC
Fj_E ARS U_'H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Rotate

c Target register or memory
C
> > > c
RCR
> > " c
ROR
What is the result of ROL byte ptr [SI], 1 if this memory location 3C020

contains 41H?

EX.

EARSON Zlfe):flfl; LcanguageWhﬁ?t isétl% resulgl% ROL word ptr [S], 8 if this memory Iocat&%?& 9883, 2000, 1998 Pearson Higher Education, Inc.
- — By Muhammad Ali ﬁﬁmﬁ?} anice ;glliéspie Mazidi and Danny Causey Pearson Preni'soHall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS

ROR/ROL rotate right/rotate left

* In ROR (Rotate Right), as bits are shifted from left
to right, they exit from the right end (LSB) and enter
the left end (MSB).

— As each bit exits LSB, a copy is given to the carry flag.
* In ROR the LSB is moved to the MSB, & copied to CF.

* In ROL (Rotate Left), as bits are shifted from right
to left, they exit the left end (MSB) and enter the
right end (LSB).

— Every bit that leaves the MSB is copied to the carry flag.
* In ROL the MSB is moved to the LSB and is also copied to CF

Programs 3-7 & 3-8 on page 120 show applications of rotation instructions

_ The x86 PC
Fj_E ARS U_ﬁ Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS
ROR rotate right

E MSB m——p] SB l CF

MOV AL, 36H ;AL=0011 0110
ROR AL, 1 ;AL=0001 1011 CF=0
ROR AL,1 ;AL=1000 1101 CF=1
ROR AL,1l ;AL=1100 0110 CF=1
Lo et
MOV AL, 36H ;AL=0011 0110
MOV CL, 3 ;CL=3 number of times to rotate
ROR KT, . BE ;AL=1100 0110 CFr=1

;the operand can be a word:

MOV BX, OC7TE5H ;BX=1100 0111 1110 0101

MOV (il B ;CL=6 number of times to rotate
ROR BXCLh ;BX=1001 0111 0001 1111 CF=1

— — |f the operand is to be rotated once, the 1 is coded.

« If it is to be rotated more than once, register CL is used
to hold the number of times it is to be rotated.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS ‘Ji"l
ROL rotate left CE

MOV BH, 72H ;BH=0111 0010
ROL BH, 1 ;BH=1110 0100 CF=0
ROL BH, 1 ;BH=1100 1001 CF=1
ROL BH, 1 ;BH=1001 0011 CF=1
ROL BH, 1 ;BH=0010 0111 CEF=1
ol igh
MOV BH, 72H ;BH=0111 0010
MOV CL,4 ;CL=4 number of times to rotate
ROL BH, CL ;BH=0010 0111 CF=1
; The operand can be a word:
MOV DX, 672AH ;DX=0110 0111 0010 1010
MOV CL,3 ;CL=3 number of times to rotate

ROL DX,CL ;DX=0011 1001 0101 0011 Cr=1

— — If the operand is to be rotated once, the 1 is coded.

« If it is to be rotated more than once, register CL is used
to hold the number of times it is to be rotated.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS

RCR/RCL right/left through carry

* In RCR, as bits are shifted from left to right, they
exit the right end (LSB) to the carry flag, and the
carry flag enters the left end (MSB).

— The LSB is moved to CF and CF is moved to the MSB.
« CF acts as if it is part of the operand.

* In RCL, as bits are shifted from right to left they exit
the left end (MSB) and enter the carry flag, and the
carry flag enters the right end (LSB).

— The MSB is moved to CF and CF is moved to the LSB.
« CF acts as if it is part of the operand.

e The x86 PC
Fj_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS ‘ | \
MSB ==l SB CF

RCR right through carry

CLEC ;make CF=0
MOV AL, 26H ;AL=0010 0110
RCR AL,l ;AL=0001 0011 CF=0
RCR AL, 1 ;AL=0000 1001 Cr=1
RCR AL, 1 +AT=1000 0100 CF=l1
%
CLE ;make CF=0
MOV AL, 26H ;AL=0010 0110
MOV Eliya ;CL=3 number of times to rotate
RCR AL, CL ;AL=1000 0100 CF=1

;the operand can be a word

STE ;make CF=1

MOV BX, 37F1H JPX=001T 0111 1313 o001

MOV elieD ;CL=5 number of times to rotate
RCR BX,CL :BX=0001 1001 1011 1111 CF=0

— — If the operand is to be rotated once, the 1 is coded.CF=1
* |f more than once, register CL holds the number of rotations.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.5: ROTATE INSTRUCTIONS

RCL left through carry)

5T rmake CF=1
MOV BL, 15H ;BL=0001 0101
RCL BI. ;1 ;0010 1011 CF=0
RCL BL, 1 ;0101 0110 CF=0

or:
STC ;make CF=1
MOV BL; 158 ;BL=0001 0101
MOV e, 2 ; CL=2 number of times for rotation
RCL BL,CL ;BL=0101 0110 CF=0

; the operand can be a word:
CLC rmake CF=0
MOV AX,191CH ;AX=0001 1001 0001 1100
MOV CLizh ;CL=5 number of times to rotate
RCL AX,CL ;AX=0010 0011 1000 0001 Cr=1

— — If the operand is to be rotated once, the 1 is coded.
* |f more than once, register CL holds the number of rotations.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Write a program that counts the number of 1’s in a byte and writes it
into BL

DATA1 DB 97 ; 61h
SUB BL,BL ;clear BL to keep the number of 1s
MOV DL,8;rotate total of 8 times
MOV AL,DATA1
AGAIN: ROL AL/ ;rotate it once
JNC NEXT ;check for 1
INC BL ;if CF=1 then add one to count
NEXT: DEC DL ;go through this 8 times
JNZ AGAIN ;if not finished go back
NOP

A
A

P

_E ARS D_H Assembly Language, Design, and Interfacing

The x86 PC

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren1'57Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

COMPARE of unsigned numbers

* CMP destination, source

— Compares two operands & changes flags according to the
result of the comparison, leaving the operand unchanged.

» Destination operand can be in a register or in memory.
« Source operand can be in a register, in memory, or immediate.

« CF, AF, SF, PF, ZF, and OF flags reflect the result.
— Only CF and ZF are used.

Table 3-3: Flag Settings for ComEare Instruction

Compare operands CF ¥
destination > source 0 0
destination = source 0 |
destination < source | 0

_ The x86 PC
Fj_E ARS U_ﬁ Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Compare

Mnemonic | Meaning | Format Operation Flags Affected

CMP Compare | CMP D,S | (D)~ (S) is used in CF, AF, OF, PF, SF, ZF
setting or resetting
the flags

(a)

Signed Comparison

Unsigned Comparison

Destination Source
Register Register
Register Me > F=0OF
Dest > 0 0 Mﬁﬂ mory Dest 0 SF=0
emory Register source
source Register Immediate Dest = y
Dest = 0 1 Memory Immediate est= X
Dest < 1 0 Dest < 0 | SF<>OF
b
source [] source
Fj_E ARS U_f_\l Zilfe):flflf LCanguage, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey IRt Prengg-lall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

COMPARE of unsigned numbers

« Compare is really a SUBtraction.

— Except that the values of the operands do not change.
* Flags are changed according to the execution of SUB.
« Operands are unaffected regardless of the result.
« Only the flags are affected.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

COMPARE of unsigned numbers

* Program 3-3 uses CMP to find the highest byte
in a series of 5 bytes defined in the data segment.

Assume that there is a class of five people with the following grades: 69, 87, 96, 45, and 75.
Find the highest grade.
TITLE PROG3-3 (EXE) CMP EXAMPLE
PAGE Bl , 132
.MODEL SMALL
.STACK 64
’ DATA
GRADES DB 69,87,96,45,75
ORG aoo8
HIGHEST DB 7
. CODE
MAIN PROC FAR
MOV~ AX,@DATA
MOV ~ DS,AX
w ey 1 monint et I
See the entire program listing on page 107 of your textbook.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

COMPARE of unsigned numbers
* Program 3-3 searches five

com-, data items to find the highest
e grade, with a variable called
=~ "Highest" holding the highest
«w grade found so far.

A REPEAT-UNTIL structure was used
In the program, where grades are compared,
one by one, to Highest.

If any of them is higher, that value is placed

in Highest, continuing until all data items are
l j checked.
s
_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS
COMPARE of unsigned numbers

* Program 3-3, coded in Assembly language, uses
register AL to hold the highest grade found so far.

— AL is given the initial value of 0.

* Aloop compares each of the 5 bytes with AL.

— If AL contains a higher value, the loop continues to
check the next byte.

— If AL is smaller than the byte checked, the contents of
AL are replaced by that byte and the loop continues.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

COMPARE of unsigned numbers

* There is a relationship between the pattern of
lowercase/uppercase ASCII letters, as shown
below for A and a:

A 01@0 0001 41H The only bit that changes is d5.
To change from lowercase to
a 01|i|0 0001 61H uppercase, d5 must be masked.
Letter Hex Binary Letter Hex Binary
A 41 0100 0001 a 61 0110 0001
B 42 0100 0010 b 62 0110 0010
C 43 0100 0011 C 63 0110 0011
Y 59 0101 1001 y 79 0111 1001
Z 5A 0101 1010 Z TA 0111 1010

e The x86 PC
Fj_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.3: LOGIC INSTRUCTIONS

COMPARE of unsigned numbers

* Program 3-4 uses CMP to determine if an ASCII
character is uppercase or lowercase.

— |t detects if the letter is in lowercase, and if it is,
it is ANDed with 1101 1111B = DFH.

« Otherwise, it is simply left alone.

— To determine if it is a lowercase letter, it is compared
with 61H and 7AH to see if it is in the range a to z.

« Anything above or below this range should be left alone.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Compare Example

DATA1 DW 235Fh

MOV AX, CCCCH
CMP AX, DATA1
JNC OVER

SUB AX,AX
OVER: INC DATA1

CCC - 235F = A96D => Z=0, CF=0 => i
CCC > DATA1 |
|
|

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren”GGHall - Upper Saddle River, NJ 07458

Compare (CMP)

For ex: CMP CL,BL ; CL-BL; no modification on neither operands
Write a program to find the highest among 5 grades and write it in DL
DATA DB 51, 44, 99, 88, 80 ;13h,2ch,63h,58h,50h
MOV CX,5 ;set up loop counter
MOV BX, OFFSET DATA ;BX points to GRADE data
SUB ALAL ;AL holds highest grade found so far
AGAIN: CMP AL,[BX] ;compare next grade to highest
JA NEXT ;jump if AL still highest
MOV AL,[BX] ;else AL holds new highest
NEXT: INC BX ;point to next grade
LOOP AGAIN ;continue search
MOV DL, AL
The x86 PC

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

]:j_E — D_H < SSemoly Language D and netacns Pearson Pren”G7Hall Upper Saddle River, NJ 07458

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

Jd 98X =YL

Buidepsiul pue ‘ubisep ‘ebenbue| A|quissse

fifth

edition

Prentice Hall

Dec Hex Bin
00000011

3 3

ORG

’

ENDS

The x86 PC

assembly language,
design, and interfacing
fifth edition

MUHAMMAD ALI MAZIDI
JANICE GILLISPIE MAZIDI
DANNY CAUSEY

